证明:连接CD,DB
∵ AD平分∠BAC,DF⊥AB,DE⊥AC
∴ DF=DM(角平分线上的点到角的两边距离相等)
∵ AD=AD ∠AFD=∠AED=90°
∴ △AFD≌△AMD ∴ AF=AE,
∵ DM垂直平分线BC
∴ CD=BD(垂直平分线上的点到线段两端点距离相等)
∵ FD=DE,∠CED=∠DFB=90°
∴ Rt△CDE≌Rt△BDF ∴ BF=CE
证明:连接CD,DB
∵ AD平分∠BAC,DF⊥AB,DE⊥AC
∴ DF=DM(角平分线上的点到角的两边距离相等)
∵ AD=AD ∠AFD=∠AED=90°
∴ △AFD≌△AMD ∴ AF=AE,
∵ DM垂直平分线BC
∴ CD=BD(垂直平分线上的点到线段两端点距离相等)
∵ FD=DE,∠CED=∠DFB=90°
∴ Rt△CDE≌Rt△BDF ∴ BF=CE