tanφ=1/2 ,
sinθ=3/5 ,1-cos^2θ=9/25,cosθ=-4/5
tanθ=-3/4
tan(θ+φ)=(tanθ+tanφ)/(1-tanθ*tanφ)
=(-3/4+1/2)/(1+3/4*1/2)
=(-1/4)/(11/8)=-8/44
tan(θ-φ))=(tanθ-tanφ)/(1+tanθ*tanφ)
=(-3/4-1/2)/(1-3/4*1/2)
=(-5/4)/(5/8)=-2
tanφ=1/2 ,
sinθ=3/5 ,1-cos^2θ=9/25,cosθ=-4/5
tanθ=-3/4
tan(θ+φ)=(tanθ+tanφ)/(1-tanθ*tanφ)
=(-3/4+1/2)/(1+3/4*1/2)
=(-1/4)/(11/8)=-8/44
tan(θ-φ))=(tanθ-tanφ)/(1+tanθ*tanφ)
=(-3/4-1/2)/(1-3/4*1/2)
=(-5/4)/(5/8)=-2