解题思路:(Ⅰ)依题意,n=log2bn,n=Sn2+2Sn,可求得
b
n
=
2
n
,
S
n
=
n
2
+2n
从而求得:an=2n+1;
(Ⅱ)先求出
c
n
=
a
n
•
b
n
=(2n+1)•
2
n
,从而可求出Tn,2Tn,然后做差后即可求得数列{cn}的前n项和Tn.
(Ⅰ)点(bn,n)、(n,Sn)分别在函数y=log2x及函数y=x2+2x的图象上
依题意,n=log2bn,n=Sn2+2Sn,可求得bn=2n,Sn=n2+2n
从而求得:an=2n+1.
(Ⅱ)cn=an•bn=(2n+1)•2n
Tn=3•21+5•22+7•23+…+(2n+1)•2n①
2Tn=3•22+5•23+7•24+…+(2n+1)•2n+1②
①-②得:
−Tn=3•21+2•22+2•23+…+2•2n−(2n+1)•2n+1
=2+2(2+22+23+…+2n)−(2n+1)•2n+1
=2+2•
2(1−2n)
1−2−(2n+1)•2n+1…(10分)
∴Tn=(2n−1)2n+1+2,(n∈N*)
点评:
本题考点: 数列的求和.
考点点评: 本题主要考察了数列的求和,数列通项公式的求法,属于中档题.