∫(x/(x²+y²))dx
令t=x²+y²
dt/dx=2x
2xdx=dt
∫(x/(x²+y²))dx
=(1/2)∫(1/(x²+y²))(2xdx)
=(1/2)∫(1/t)dt
=(1/2)ln|t| + C
=(1/2)ln(x²+y²) + C
∫(x/(x²+y²))dx
令t=x²+y²
dt/dx=2x
2xdx=dt
∫(x/(x²+y²))dx
=(1/2)∫(1/(x²+y²))(2xdx)
=(1/2)∫(1/t)dt
=(1/2)ln|t| + C
=(1/2)ln(x²+y²) + C