Sn=(-1)^n*an-1/2^n
S(n-1)=(-1)^(n-1)*a(n-1)-1/[2^(n-1)]
两式相减得:
an=(-1)^n*an-(-1)^(n-1)*a(n-1)+1/2^n.①
令n=4
a4=a4-a3+1/16==>a3= - 1/16
(2)
在①中令n=2k
a(2k)=a(2k)+a(2k-1)+1/[2^(2k)]
a(2k-1)= -1/[4^(2k)].②
a(2k-1)= - 1/[(4^k)]
在①中令n=2k+1得:
a(2k+1)=-a(2k+1)-a(2k)+1/[2^(2k+1)]
a(2k)=-2a(2k+1)+1/[2^(2k+1)] ,(由②==>a(2k+1)= - 1/[2^(2k+2)].)
=2/[2^(2k+2)]+1/[2^(2k+1)]
=1/[2^(2k+1)]+1/[2^(2k+1)]
=1/[2^(2k)]=1/4^k
即,
a(2k)=1/4^k.③
S1+S2+...+S100=(a1+a3+a5+...+a99)+(a2+a4+...+a100)-(1/2+1/2^2+.+1/2^100)
= - [1/4+1/4^2+.+1/4^25]+ [1/4+1/4^2+.+1/4^25])-(1/2+1/2^2+.+1/2^100)
=0)-(1/2+1/2^2+.+1/2^100)
=(1/2)^100-1