设Sn为数列{an}的前n项和,Sn=(-1)^n an - 1/(2^n),n∈N*,则 (1)a3=___ (2)S

1个回答

  • Sn=(-1)^n*an-1/2^n

    S(n-1)=(-1)^(n-1)*a(n-1)-1/[2^(n-1)]

    两式相减得:

    an=(-1)^n*an-(-1)^(n-1)*a(n-1)+1/2^n.①

    令n=4

    a4=a4-a3+1/16==>a3= - 1/16

    (2)

    在①中令n=2k

    a(2k)=a(2k)+a(2k-1)+1/[2^(2k)]

    a(2k-1)= -1/[4^(2k)].②

    a(2k-1)= - 1/[(4^k)]

    在①中令n=2k+1得:

    a(2k+1)=-a(2k+1)-a(2k)+1/[2^(2k+1)]

    a(2k)=-2a(2k+1)+1/[2^(2k+1)] ,(由②==>a(2k+1)= - 1/[2^(2k+2)].)

    =2/[2^(2k+2)]+1/[2^(2k+1)]

    =1/[2^(2k+1)]+1/[2^(2k+1)]

    =1/[2^(2k)]=1/4^k

    即,

    a(2k)=1/4^k.③

    S1+S2+...+S100=(a1+a3+a5+...+a99)+(a2+a4+...+a100)-(1/2+1/2^2+.+1/2^100)

    = - [1/4+1/4^2+.+1/4^25]+ [1/4+1/4^2+.+1/4^25])-(1/2+1/2^2+.+1/2^100)

    =0)-(1/2+1/2^2+.+1/2^100)

    =(1/2)^100-1