设A等于90度角C等于150度AB=AC=CD
∠B = α ,∠D = β
因为 AB = AC 所以 ∠ACB = ∠B = α ,∠CAB = 180 - 2α
又因为 AC = CD 所以 ∠CAD = ∠D = β ,∠ACD = 180 - 2β
又因为 90° = ∠A = ∠CAD + ∠CAB = β + 180 - 2α
150° = ∠C = ∠ACD + ∠ACB = 180 - 2β + α
解得 α = 70° 即 ∠B = 70° ,∠D=90°
设A等于90度角C等于150度AB=AC=CD
∠B = α ,∠D = β
因为 AB = AC 所以 ∠ACB = ∠B = α ,∠CAB = 180 - 2α
又因为 AC = CD 所以 ∠CAD = ∠D = β ,∠ACD = 180 - 2β
又因为 90° = ∠A = ∠CAD + ∠CAB = β + 180 - 2α
150° = ∠C = ∠ACD + ∠ACB = 180 - 2β + α
解得 α = 70° 即 ∠B = 70° ,∠D=90°