设α为任意角,则下列等式中,正确的是 A.sin(α-π/2)=cosα B.cosα(α-π/2)=sinα
1个回答
B.cos(α-π/2)=sinα
cos(α-π/2)=cos[-(π/2-α)]=cos(π/2-α)=sinα
相关问题
下列等式中错误的是( )A.sin(π+α)=-sinαB.cos(π-α)=cosαC.cos(2π-α)=cosα
设tan(π+α)=2,则sin(α−π)+cos(π−α)sin(π+α)−cos(π+α)=( )
设f(α)=[2sin(π+α)cos(π-α)-cos(π+α)]/[(1+sin^2α+sin(π-α)-cos^2
设f(α)=[2sin(π+α)cos(π-α)-cos(π+α)]/[(1+sin^2α+sin(π-α)-cos^2
sin(π/2+α)·cos(π/2-α)/cos(π+α)+sin(π-α)·cos(π/2+α)/sin(π+α)=
已知sin(7π-α)-3cos(3π/2+α)=2,则(sin(π-α)+cos(π+α))/(sinα+cos(-α
化简[sin(π/2+α)*cos(π/2-α)]/cos(π+α)+[sin(π-α)*cos(π/2+α)]/sin
化简[sin(π/2-α)cos(π/2-α)]/cos(π+α)-[sin(π-α)cos(π/2-α)]/sin(π
若sin(π-α)+cos(2π-α)=1 ,则sin4α+cos4α+sin(π+α)·cos(4π-α)的值为___
..sin^2(π+α)*cos(π+α)*cos(-α-2π)/tan(π+α)*sin^3(π/2+α)*sin(-