∵正数x y满足x+2y=2,
∴2=x+2y=x/2+x/2+2y≥3[³√(x²y/2)]
即³√(x²y/2)≤2/3,
x²y/2≤8/27,
x²y≤16/27,
1/(x²y)≥27/16,
∴(x+8y)/(xy)=1/y+8/x=1/y+4/x+4/x≥3[³√(16/x²y)≥3(³√27)=9
当且仅当x/2=2y=2/3,即x=4/3,y=1/3时,(x+8y)/(xy)取得最小值9.
∵正数x y满足x+2y=2,
∴2=x+2y=x/2+x/2+2y≥3[³√(x²y/2)]
即³√(x²y/2)≤2/3,
x²y/2≤8/27,
x²y≤16/27,
1/(x²y)≥27/16,
∴(x+8y)/(xy)=1/y+8/x=1/y+4/x+4/x≥3[³√(16/x²y)≥3(³√27)=9
当且仅当x/2=2y=2/3,即x=4/3,y=1/3时,(x+8y)/(xy)取得最小值9.