过点A作AD⊥BC于点D
∵ ∠B=45°,∠BAC=75°且,∠B+∠BAC+∠C=180°
∴∠C=60°
∴∠DAC=30°,∠BAD=45°
CD/AC=sin∠DAC AD/AC=cos∠DAC
CD=1/2( sin∠DAC)=2 AD=AC*cos∠DAC =2√3
∵ ∠B=∠BAD=45°
∴AD=BD
BD=2√3
AB=BDsin∠BAD=2√6
BC=2+2√3
期待您的采纳
过点A作AD⊥BC于点D
∵ ∠B=45°,∠BAC=75°且,∠B+∠BAC+∠C=180°
∴∠C=60°
∴∠DAC=30°,∠BAD=45°
CD/AC=sin∠DAC AD/AC=cos∠DAC
CD=1/2( sin∠DAC)=2 AD=AC*cos∠DAC =2√3
∵ ∠B=∠BAD=45°
∴AD=BD
BD=2√3
AB=BDsin∠BAD=2√6
BC=2+2√3
期待您的采纳