(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,
(2)成立.
方法一:连接DE,DF.
∵△ABC是等边三角形,∴AB=AC=BC
又∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线、
∴DE=DF=EF,∠FDE=60°
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE
在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,
∴△DMF≌△DNE
∴MF=NE.
方法二:
延长EN,则EN过点F.
∵△ABC是等边三角形,
∴AB=AC=BC
又∵D,E,F是三边的中点,
∴EF=DF=BF
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,
∴∠BDM=∠FDN
又∵DM=DN,∠ABM=∠DFN=60°,
∴△DBM≌△DFN
∴BM=FN
∵BF=EF,∴MF=EN.
方法三:
连接DF,NF
∵△ABC是等边三角形,
∴AB=BC=AC
又∵D,E,F是三边的中点,
∴DF为三角形的中位线,
∴DF= 12AC= 12AB=DB
又∠BDM+∠MDF=60°,∠NDF+∠MDF=60°,
∴∠BDM=∠FDN
在△DBM和△DFN中,DF=DB,
DM=DN,∠BDM=∠NDF,
∴△DBM≌△DFN.
∴∠B=∠DFN=60°
又∵△DEF是△ABC各边中点所构成的三角形,
∴∠DFE=60°
∴可得点N在EF上,
∴MF=EN.
下面一题:
(1)
依题意有:∠BAC=30,∠BCD=60
所以,∠ABC=∠BCD-∠BAC=60-30=30
∠ABC=∠BAC
AC=BC=20
该船到达C点时需要时间=20/10=2时
该船到达C点时的时间=上午11时30分+2小时=下午1时30分
(2)CD=BC/2=20/2=10
该船由C到达D点时需要时间=10/10=1时
该船到达D点时的时间=下午1时30分+1小时=下午2时30分
今天运气真好,又碰到你的问题~又是两题哈,··