证明:
∵AD平分∠BAC
∴∠BAD=∠BAC/2
∵BE平分∠ABC
∴∠ABE=∠ABC/2
∴∠AHE=∠BAD+∠ABE=(∠BAC+∠ABC)/2=(180-∠ACB)/2=90-∠ACB/2
∵CF平分∠ACB
∴∠ACF=∠ACB/2
∵HG⊥AC
∴∠CHG+∠ACF=90
∴∠CHG=90-∠ACF=90-∠ACB/2
∴∠AHE=∠CHG
证明:
∵AD平分∠BAC
∴∠BAD=∠BAC/2
∵BE平分∠ABC
∴∠ABE=∠ABC/2
∴∠AHE=∠BAD+∠ABE=(∠BAC+∠ABC)/2=(180-∠ACB)/2=90-∠ACB/2
∵CF平分∠ACB
∴∠ACF=∠ACB/2
∵HG⊥AC
∴∠CHG+∠ACF=90
∴∠CHG=90-∠ACF=90-∠ACB/2
∴∠AHE=∠CHG