如图,三角形ABC,角平分线AB、BE、cF相交于点H,过H,点作HG垂直于Ac,垂足为G,那么角AHE等于角cHG吗?

3个回答

  • 证明:

    ∵AD平分∠BAC

    ∴∠BAD=∠BAC/2

    ∵BE平分∠ABC

    ∴∠ABE=∠ABC/2

    ∴∠AHE=∠BAD+∠ABE=(∠BAC+∠ABC)/2=(180-∠ACB)/2=90-∠ACB/2

    ∵CF平分∠ACB

    ∴∠ACF=∠ACB/2

    ∵HG⊥AC

    ∴∠CHG+∠ACF=90

    ∴∠CHG=90-∠ACF=90-∠ACB/2

    ∴∠AHE=∠CHG