利用矩阵的初等变换,求方阵的逆阵(3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1)

2个回答

  • (A,E) =

    3 -2 0 -1 1 0 0 0

    0 2 2 1 0 1 0 0

    1 -2 -3 -2 0 0 1 0

    0 1 2 1 0 0 0 1

    r1-3r3

    0 4 9 5 1 0 -3 0

    0 2 2 1 0 1 0 0

    1 -2 -3 -2 0 0 1 0

    0 1 2 1 0 0 0 1

    r1-4r4,r2-2r4,r3+2r4

    0 0 1 1 1 0 -3 -4

    0 0 -2 -1 0 1 0 -2

    1 0 1 0 0 0 1 2

    0 1 2 1 0 0 0 1

    r2+2r1,r3-r1,r4-2r1

    0 0 1 1 1 0 -3 -4

    0 0 0 1 2 1 -6 -10

    1 0 0 -1 -1 0 4 6

    0 1 0 -1 -2 0 6 9

    r1-r2,r3+r2,r4+r2

    0 0 1 0 -1 -1 3 6

    0 0 0 1 2 1 -6 -10

    1 0 0 0 1 1 -2 -4

    0 1 0 0 0 1 0 -1

    交换行

    1 0 0 0 1 1 -2 -4

    0 1 0 0 0 1 0 -1

    0 0 1 0 -1 -1 3 6

    0 0 0 1 2 1 -6 -10

    得 A^-1 =

    1 1 -2 -4

    0 1 0 -1

    -1 -1 3 6 2 1 -6 -10