直角三角形中使矩形面积最大的问题.

7个回答

  • 学过二次函数么?学过就好解了,木有学过就麻烦了.

    先画一个图,三角形两直角边为a、b,设矩形在直角边a上面的长为X,根据相似三角形性质,可以得到矩形另一边的长为:(a-X)b/a,(如果这个式子不理解,去初中回炉),那么矩形面积S=X(a-X)b/a.于是得到一个二次函数:S=-b/aX^2+bX;求这个二次函数的极大值,因为式子中所有值均为正值,这是一个开口向下的二次函数,有极大值,根据二次函数性质,当(X=-B/2A)时,S有极大值,(这里的A和B,是指标准二次函数里面的a和b,不是这个三角形里面的a和b);带入上式,X=-b/2(-b/a),解得X=a/2,也就是说a的长度是x的一半,则为矩形边为直角边上的中线,斜边上的顶点,为中点.

    这个是用二次函数方法求解,楼上的各位也不错,殊途同归!