已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图
证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,
证明2
即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN∥AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图
方法3(相似形) 过M作MN∥AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC 而在△ABC内,∵MN∥AB ∴AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC
方法4(正弦定理) 作三角形的外接圆,AM交圆于D(起标明交点作用,对证明无影响) 由正弦定理,得,AB/sin∠BMA=BM/sin∠BAM, AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180° sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, ∴AB/AC=MB/MC
这是三角形角平分线性质定理