[sin^2(θ)+4cosθ]/sin(90-θ)-1/tan(90-θ)
=[sin^2(θ)+4cosθ]/cos(θ)-1/cotθ
=[sin^2(θ)+4cosθ]/cos(θ)-sin(θ)/cosθ
=[sin^2(θ)-sinθ+4cosθ]/cosθ
={sin(θ)[sin(θ)-1]+4cosθ]/cosθ
=tanθ(sinθ-1)+4
[sin^2(θ)+4cosθ]/sin(90-θ)-1/tan(90-θ)
=[sin^2(θ)+4cosθ]/cos(θ)-1/cotθ
=[sin^2(θ)+4cosθ]/cos(θ)-sin(θ)/cosθ
=[sin^2(θ)-sinθ+4cosθ]/cosθ
={sin(θ)[sin(θ)-1]+4cosθ]/cosθ
=tanθ(sinθ-1)+4