猜测你漏了3个括号
[(x-1)/(x+2)]^(x+1)
=[1-3/(x+2)]^(x+1)
={[1-1/(x/3+2/3)]^(x/3+2/3)}^[(x+1)/(x/3+2/3)]
然后取极限
令t=x/3+2/3->无穷
原式=[(1-1/t)^(t)]^[(3t-1)/t]
底数的极限是e^(-1)
指数极限=3-1/t=3
所以答案是[e^(-1)]^3=e^(-3)
猜测你漏了3个括号
[(x-1)/(x+2)]^(x+1)
=[1-3/(x+2)]^(x+1)
={[1-1/(x/3+2/3)]^(x/3+2/3)}^[(x+1)/(x/3+2/3)]
然后取极限
令t=x/3+2/3->无穷
原式=[(1-1/t)^(t)]^[(3t-1)/t]
底数的极限是e^(-1)
指数极限=3-1/t=3
所以答案是[e^(-1)]^3=e^(-3)