1.求函数f(x)=sin(-x+π/3)在[π/6,/2π]上的值域

1个回答

  • f(x)=(1/2)[1-cos(2x-π/3)]+(1/2)[1-cos(2x+π/3)]=1-[cos(2x-π/3)+cos(2x+π/3)]=1-2cos2xcos(π/3)=1-cos2x(1)周期为T=2π/2=π;(2)f(x)在[-π/3,0]上是减函数,在[0,π/6]上是增函数,最大值为f(-π/3)=3/2,最小值为f(0)=0