解题思路:(1)利用f(0)=3求出c,利用f(x+1)-f(x)=4x+1求出a,b,即可求f(x)的解析式;
(2)在区间[-1,1]上,不等式f(x)>6x+m恒成立,转化为二次函数的闭区间上的最值,求解实数m的取值范围.
(1)由f(0)=3得,c=3.∴f(x)=ax2+bx+3.
又f(x+1)-f(x)=4x+1,∴a(x+1)2+b(x+1)+3-(ax2+bx+3)=4x+1,
即2ax+a+b=4x+1,
∴
2a=4
a+b=1,∴
a=2
b=−1.∴f(x)=2x2-x+3.
(2)f(x)>6x+m等价于2x2-x+3>6x+m,即2x2-7x+3>m在[-1,1]上恒成立,
令g(x)=2x2-7x+3,则g(x)min=g(1)=-2,∴m<-2.
点评:
本题考点: 函数恒成立问题;函数解析式的求解及常用方法.
考点点评: 本题考查函数的恒成立,二次函数闭区间上的最值的求法,函数的解析式的求法,考查计算能力.