f(x)=(π-X)/2(0展开后sinnx的系数是1/n

1个回答

  • f(x)=π-x/2=a0/2+∑ancosnωx+bnsinnωx;∑的n从1~∞

    T=π,ω=2π/T=2

    an=2/π ∫f(x)cosnωxdx n=0,1,2...

    bn=2/π ∫f(x)sinnωxdx n=1,2,3...

    an=2/π ∫(π-x/2)cosn2xdx

    bn=2/π ∫(π-x/2)sinn2xdx

    注:定积分下限为-π/2,上限为π/2

    an=2∫cosn2xdx-2 /π∫x/2cosn2xdx=2/n sinnπ-1 /4n^2π∫2nxdsin2nx

    采用分部积分法

    ∫2nxdsin2nx=2nxsin2nx-∫sin2nxd2nx=2nxsin2nx+∫dcos2nx=2nπsinnπ

    an=3/2n sinnπ

    an=0

    n=0,2,4...

    an=3/2n

    n=1,3,5...

    bn=2∫sinn2xdx-2/π∫x/2sinn2xdx=-1/4n^2π∫2nxsinn2xd2nx

    采用分部积分法

    ∫2nxsinn2xd2nx=-∫2nxdcos2nx=-2nxcos2nx+∫dsin2nx=-2nπcosnπ

    bn=cosnπ/2n

    bn=1/2n

    n=1,3,5...

    bn=-1/2n

    n=2,4,6...

    希望能解决您的问题.