证明:(1)在Rt△ACB和Rt△ABC中,∵∠A=∠A(公共角),∠ADC=∠ACB=90°,∴Rt△ACB∽Rt△ABC,所以AC/AB=AD/AC,所以AC²=AD×AB.
(2)同理证明△CBD∽△ACD可得BD/CD=CD/AD,∴CD²=DA×DB.
(3)同样证明△CBD∽△ABC可得CB/AB=BD/BC,∴BC²=BD×BA.
证明:(1)在Rt△ACB和Rt△ABC中,∵∠A=∠A(公共角),∠ADC=∠ACB=90°,∴Rt△ACB∽Rt△ABC,所以AC/AB=AD/AC,所以AC²=AD×AB.
(2)同理证明△CBD∽△ACD可得BD/CD=CD/AD,∴CD²=DA×DB.
(3)同样证明△CBD∽△ABC可得CB/AB=BD/BC,∴BC²=BD×BA.