设u=x+y,v=x-y
解得x=(u+v)/2,y=(u-v)/2
则f(x+y,x-y)=xy+y2可变为
f(u,v)=(u+v)(u-v)/4+((u-v)^2)/4
由于函数变量符号可以随便写
所以f(x,y)=(x+y)(x-y)/4+((x-y)^2)/4
df(x,y)=(x-y/2)dx-x/2dy
设u=x+y,v=x-y
解得x=(u+v)/2,y=(u-v)/2
则f(x+y,x-y)=xy+y2可变为
f(u,v)=(u+v)(u-v)/4+((u-v)^2)/4
由于函数变量符号可以随便写
所以f(x,y)=(x+y)(x-y)/4+((x-y)^2)/4
df(x,y)=(x-y/2)dx-x/2dy