ab+bc+ca = 1/2{(a+b+c)^2-(a^2+b^2+c^2)} = 1/4{2(a+b+c)^2-(a^2+b^2)-(b^2+c^2)-(c^2+a^2)}
= 1/2(a+b+c)^2 - 1/4{(a^2+b^2)+(b^2+c^2)+c^2-a^2)}
= 1/2(a+b+c)^2 - 1/4(1+2+2)
= 1/2(a+b+c)^2 - 5/4
1/2(a+b+c)^2≥0
1/2(a+b+c)^2 - 5/4 ≥-5/4
ab+bc+ca的最小值-5/4
ab+bc+ca = 1/2{(a+b+c)^2-(a^2+b^2+c^2)} = 1/4{2(a+b+c)^2-(a^2+b^2)-(b^2+c^2)-(c^2+a^2)}
= 1/2(a+b+c)^2 - 1/4{(a^2+b^2)+(b^2+c^2)+c^2-a^2)}
= 1/2(a+b+c)^2 - 1/4(1+2+2)
= 1/2(a+b+c)^2 - 5/4
1/2(a+b+c)^2≥0
1/2(a+b+c)^2 - 5/4 ≥-5/4
ab+bc+ca的最小值-5/4