原式=∫(secx)^2dx-∫secxdx
=tanx-(1/2)∫{(1+sinx+1-sinx)/[1-(sinx)^2]}d(sinx)
=tanx-(1/2)∫[1/(1-sinx)]d(sinx)-(1/2)∫[1/(1+sinx)]d(sinx)
=tanx+(1/2)ln|1-sinx|+(1/2)ln|1+sinx|+C
=tanx-ln(1-sinx)+ln|cosx|+C
原式=∫(secx)^2dx-∫secxdx
=tanx-(1/2)∫{(1+sinx+1-sinx)/[1-(sinx)^2]}d(sinx)
=tanx-(1/2)∫[1/(1-sinx)]d(sinx)-(1/2)∫[1/(1+sinx)]d(sinx)
=tanx+(1/2)ln|1-sinx|+(1/2)ln|1+sinx|+C
=tanx-ln(1-sinx)+ln|cosx|+C