将原方程转换为y=-(x-m/2)^2+m^2/4+n,
由题可得当x=m/2=3时,y取得最大值m^2/4+n=4,可求得m=6,n=-5
求与x轴交点即是令y=0,-x^2+6x-5=0,即x^2-6x+5=0
(x-1)(x-5)=0,得x=1或5,所以坐标为(1,0)和(5,0)
将原方程转换为y=-(x-m/2)^2+m^2/4+n,
由题可得当x=m/2=3时,y取得最大值m^2/4+n=4,可求得m=6,n=-5
求与x轴交点即是令y=0,-x^2+6x-5=0,即x^2-6x+5=0
(x-1)(x-5)=0,得x=1或5,所以坐标为(1,0)和(5,0)