1:
y'=x*[loga(x^2+x-1)]'+loga(x^2+x-1)
=x*(2x+1)/[lna*(-1 + x + x^2)]+loga(x^2+x-1)
=(2x^2+x)/[lna*(-1 + x + x^2)]+loga(x^2+x-1)
2:
y'=(x+1)/[Ln2(x-1)]*[(x - 1)/(x + 1)]'
=(x+1)/[Ln2(x-1)]*[(x+1)-(x-1)]/[(x+1)^2]
=2/[( x^2-1) Ln2]
1:
y'=x*[loga(x^2+x-1)]'+loga(x^2+x-1)
=x*(2x+1)/[lna*(-1 + x + x^2)]+loga(x^2+x-1)
=(2x^2+x)/[lna*(-1 + x + x^2)]+loga(x^2+x-1)
2:
y'=(x+1)/[Ln2(x-1)]*[(x - 1)/(x + 1)]'
=(x+1)/[Ln2(x-1)]*[(x+1)-(x-1)]/[(x+1)^2]
=2/[( x^2-1) Ln2]