证明一个不等式谢谢啊证明(1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)

1个回答

  • 用数学归纳法最简单:

    证明:当 n = 1 时,1+n/2=3/2 ,1+1/2+1/3+……+1/2^n=3/2 ,1/2+n=3/2 ,显然不等式成立.

    令 n = k 时,不等式成立

    即,1+k/2 ≤ 1+1/2+1/3+……+1/2^k ≤ 1/2+k

    令 f(k) = 1+1/2+1/3+……+1/2^k

    有 f(k+1) = f(k)+1/(2^k+1)+1/(2^k+2)+……+1/2^(k+1)

    ∵ 1/(2^k+1) ≥ 1/2^(k+1) ,1/(2^k+2) ≥ 1/2^(k+1) ,……,1/2^(k+1) ≥ 1/2^(k+1)

    ∴ f(k+1) ≥ f(k)+1/2^(k+1)+1/2^(k+1)+.+1/2^(k+1) [共2^k个]

    ∴ f(k+1) ≥ f(k)+[1/2^(k+1)] * 2^k = f(k) + 1/2 ≥ 1+k/2 + 1/2 = 1+ (k+1)/2

    同理 ∵ 1/(2^k+1) ≤ 1/2^k ,1/(2^k+2) ≤ 1/2^k ,…… ,1/2^(k+1) ≤ 1/2^k

    ∴ f(k+1) ≤ f(k)+ (1/2^k) * 2^k = f(k) +1 ≤ 1/2 + (k + 1)

    所以 1+ (k+1)/2 ≤ f(k+1) = [1+1/2+1/3+……+1/2^(k+1) ] ≤ 1/2 + (k + 1)

    综上 (1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)对于n≥1均成立.