解题思路:(1)把直线方程联立分别解得交点B,C的坐标,再利用两点间的距离公式即可得出;
(2)利用AC⊥BD,即可得出kAC•kBD=-1.再利用点斜式即可得出BD的方程.
(1)由方程组
5x-4y+8=0
x-2y-2=0
解得
x=-4
y=-3所以点B(-4,-3).
又由方程组
x+y-2=0
x-2y-2=0解得
x=2
y=0,
所以点C(2,0).
所以|BC|=
(-4-2)2+(-3-0)2=3
5.
(2)因为kAC=-1,AC⊥BD,所以kDB=1,
所以AC边上的高BD所在直线的方程为y+3=x+4,即x-y+1=0.
点评:
本题考点: 直线的一般式方程.
考点点评: 本题考查了两条直线的交点、点斜式、两点间的距离公式、相互垂直的直线的斜率之间的关系等基础知识,考查了推理能力和计算能力.