(1)f1=1/2;f2=4/9;f3=5/12;f4=2/5
猜想fn=(n+2)/(3(n+1))
(2)验证,当n=1时f1=1/2,命题成立
设当n=k时,有fk=(k+2)/(3(k+1))成立
则,当n=k+1时,fk+1=fk*(1-ak+1)==(k+2)/(3(k+1))*(1-1/(k+2)^2)
=((k+1)+2)/(3*((k+1)+1))
符合地推关系式,故证毕
做多了微积分的题,碰到高中时的数学归纳法,好怀念阿
(1)f1=1/2;f2=4/9;f3=5/12;f4=2/5
猜想fn=(n+2)/(3(n+1))
(2)验证,当n=1时f1=1/2,命题成立
设当n=k时,有fk=(k+2)/(3(k+1))成立
则,当n=k+1时,fk+1=fk*(1-ak+1)==(k+2)/(3(k+1))*(1-1/(k+2)^2)
=((k+1)+2)/(3*((k+1)+1))
符合地推关系式,故证毕
做多了微积分的题,碰到高中时的数学归纳法,好怀念阿