方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中

2个回答

  • 解题思路:方程变形得

    y=

    b

    2

    a

    x

    2

    +

    c

    a

    ,若表示抛物线,则a≠0,b≠0,所以分b=-3,-2,1,2,3五种情况,利用列举法可解.

    方程变形得y=

    b2

    ax2+

    c

    a,若表示抛物线,则a≠0,b≠0,所以分b=-3,-2,1,2,3五种情况:

    (1)当b=-3时,a=-2,c=0,1,2,3或a=1,c=-2,0,2,3或a=2,c=-2,0,1,3或a=3,c=-2,0,1,2;

    (2)当b=3时,a=-2,c=0,1,2,-3或a=1,c=-2,0,2,-3或a=2,c=-2,0,1,-3或a=-3,c=-2,0,1,2;

    以上两种情况下有9条重复,故共有16+7=23条;

    (3)同理当b=-2或b=2时,共有16+7=23条;

    (4)当b=1时,a=-3,c=-2,0,2,3或a=-2,c=-3,0,2,3或a=2,c=-3,-2,0,3或a=3,c=-3,-2,0,2;

    共有16条.

    综上,共有23+23+16=62种

    故选B.

    点评:

    本题考点: 排列、组合及简单计数问题.

    考点点评: 此题难度很大,若采用排列组合公式计算,很容易忽视重复的9条抛物线.列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用