高一必修五数学正弦定理余弦定理、急!

2个回答

  • 1因BC对应于∠A,AB对应于∠C.

    应用正弦定理得:

    BC/sinA=AB/sinC

    AB=BCsinC/sinA=BC2sinA/sinA=2BC

    故,AB=2√5.

    (2) sin(2A-π/4)=sin2Acos(π/4)-cos2Asin(π/4)

    =[(√2)/2](sin2A-cos2A)

    利用余弦定理求角A:

    cosA=(AB?+AC?-BC?)/2AB*AC

    =[(2√5)?+3?-(√5)?]/2×(2√5)×3

    =(20+9-5)/12(√5)

    故,cosA=(2√5)/5

    sinA=√[1-cos?A]=(√5)/5

    sin(2A-π/4)=[(√2)/2][2sinAcosA-(2cos?A-1)]

    =[(√2)/2]{2×(√5/5)×(2√5/5)-[2×(2√5/5)?-1]}

    整理后得:

    sin(2A-π/4)=(√2)/10

    2:(1):

    由题意得:

    因为cosA=4/5

    又因为A、B、C是三角形ABC的内角.

    所以sinA=[根号下(5^2-4^2)]/5=3/5

    又因为角B=60度

    所以sinB=(根号3)/2,B=1/2

    所以可得sinC=sin[180度-(A+B)]

    =sin(A+B)

    =sinA*cosB+cosA*sinB

    (带入数值)可得

    =(3/5)*(1/2)+(4/5)*(根号3/2)

    =(3+4倍根号3)/10(2):

    因为b=根号3,则根据正弦定理得:

    b/sinB = a/sinA

    得:[根号3/(根号3/2)]=a/(3/5)

    解之得a=6/5

    则根据三角形面积计算公式可得:S三角形ABC=(1/2)*b*a*sinC

    代入得(1/2)*根号3*(6/5)*[(3+4倍根号3)/10]

    =(9倍根号3+36)/50

    3