1.取內積得 cos(a)cos^2(a)+sin(a)sin^2(a)=0,所以 [cos(a)+sin(a)][cos^2(a)-cos(a)sin(a)+sin^2(a)]=0 不過cos^2(a)-cos(a)sin(a)+sin^2(a)=1-(1/2)sin(2a)>0 所以cos(a)+sin(a)=0 即cos(a)=-sin(a) 所以cos(a)=-sin(a)=±1/√2 所以向量b=(1/2,1/2) 2.p+q=sin(a)sin(b)+cos^2[(a+b)/2] =(1/2)[cos(a-b)-cos(a+b)]+(1/2)[1+cos(a+b)] 【積化和差、半角公式】 =(1/2)[cos(a-b)+1] 所以0≤p+q≤1 3.sin(7π/3)*cos(-11π/6)+tan(-15π/4)*1/tan(13π/6) =sin(π/3)*cos(π/6)+tan(π/4)*1/tan(π/6) =(√3)/2 * (√3)/2 + 1*1/(1/√3) =2√3 4.每個三棱錐的體積是 (1/6)*(1/2)*(1/2)*(1/2)=1/48 所以截去了體積1/6 所以剩下了體積5/6的截半立方體
1.已知向量a=(cosa,sina),向量b(cosa,sina),且向量a⊥向量b,则向量b=?2.设p=sinas
2个回答
相关问题
-
已知向量a=(3,1),向量b=(sina,cosa),且向量a与向量b垂直,则 (4sina-2cosa)/(5cos
-
已知向量a=(cosa,1+sina)向量b=(1+cosa,sina)
-
已知向量a( cosa,sina)和向量b=(根号2-sina,cosa),a∈(π,2π),且|a向量+b向量|=8根
-
若向量a=(2cosa,1),向量b=(sina,1),且向量a//向量b,则tana=(
-
设向量a=(3/2,sina),向量b=(cosa,1/3),且向量a‖向量b,则锐角a为
-
已知向量a=(1,sinA),向量b=(1,cosA)
-
已知向量A=(cosa,sina) ,向量B=(cosb,sinb)
-
设向量a=(1-cosa,根号3),向量b=(sina,3),且向量a平行向量b.求锐角a
-
已知向量a=(cosA ,sinA ),向量b=(根号3,1),则|2向量a-向量b|的最小值?
-
向量a=(sina,1),向量b=(1,cosa),-π/2