a-b与b垂直,即:(a-b)·b=a·b-|b|^2=0,即:a·b=|b|^2
a+2b与a-2b垂直,即:(a+2b)·(a-2b)=|a|^2-4|b|^2=0
即:|a|^2=4|b|^2,即:|a|=2|b|
故:cos=a·b/(|a|*|b|)=|b|^2/(2|b|^2)=1/2
故:=π/3
a-b与b垂直,即:(a-b)·b=a·b-|b|^2=0,即:a·b=|b|^2
a+2b与a-2b垂直,即:(a+2b)·(a-2b)=|a|^2-4|b|^2=0
即:|a|^2=4|b|^2,即:|a|=2|b|
故:cos=a·b/(|a|*|b|)=|b|^2/(2|b|^2)=1/2
故:=π/3