a,b,c都是正数吧.
证明:
令a=1/x,b=1/y,c=1/z
那么原不等式即为:
x^2/(y+z)+y^2/(x+z)+z^2/(x+y)>=(1/2)(x+y+z)
根据柯西不等式:
[(y+z)+(x+z)+(x+y)][x^2/(y+z)+y^2/(x+z)+z^2/(x+y)]>=(x+y+z)^2
∴2(x+y+z)[x^2/(y+z)+y^2/(x+z)+z^2/(x+y)]>=(x+y+z)^2
即:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)>=(1/2)(x+y+z)
等号当且仅当x=y=z时成立.
故原不等式得证,当且仅当a=b=c时取等号.