f(x)= ∫ (1->x) sin(√t/[5t^2+cos3t]) dt
let
dF(t) = sin(√t/[5t^2+cos3t]) dt
f(x) = ∫ (1->x) sin(√t/[5t^2+cos3t]) dt
= ∫ (1->x) dF(t)
= F(x) - F(1)
f'(x) = F'(x)
= sin(√x/[5x^2+cos3x])
f(x)= ∫ (1->x) sin(√t/[5t^2+cos3t]) dt
let
dF(t) = sin(√t/[5t^2+cos3t]) dt
f(x) = ∫ (1->x) sin(√t/[5t^2+cos3t]) dt
= ∫ (1->x) dF(t)
= F(x) - F(1)
f'(x) = F'(x)
= sin(√x/[5x^2+cos3x])