1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1

1个回答

  • 原式=1*2+2*3+3*4+...+n(n+1)

    =1²+1+2²+2+3²+3+...+n²+n

    =(1²+2²+3²+...+n²)+(1+2+3+...+n)

    ∵1²+2²+3²+...+n²=【n(n+1)(2n+1)】/6①(平方和公式)

    1+2+3+...+n=【n(n+1)】/2②(等差数列公式)

    ∴原式=①+②=【n(n+1)(n+2)】/3