原式=1*2+2*3+3*4+...+n(n+1)
=1²+1+2²+2+3²+3+...+n²+n
=(1²+2²+3²+...+n²)+(1+2+3+...+n)
∵1²+2²+3²+...+n²=【n(n+1)(2n+1)】/6①(平方和公式)
1+2+3+...+n=【n(n+1)】/2②(等差数列公式)
∴原式=①+②=【n(n+1)(n+2)】/3
原式=1*2+2*3+3*4+...+n(n+1)
=1²+1+2²+2+3²+3+...+n²+n
=(1²+2²+3²+...+n²)+(1+2+3+...+n)
∵1²+2²+3²+...+n²=【n(n+1)(2n+1)】/6①(平方和公式)
1+2+3+...+n=【n(n+1)】/2②(等差数列公式)
∴原式=①+②=【n(n+1)(n+2)】/3