证明:若函数f(x)在(-∞,+∞)内满足不等式f'(x)=f(x),且f(0)=1,则f(x)=e∧x
1个回答
记y=f(x)
则dy/dx=y
dy/y=dx
积分:ln|y|=x+c1
则y=ce^x
代入y(0)=1,得c=1
故y=e^x
即f(x)=e^x
相关问题
证明:若函数f(x)在(-oo,+oo)内满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x
证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x
证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x
证明:若函数f(x)在满足关系式f'(x)=f(x),且f(0)=1,则f(x)=e^x
证明:若函数f(x)在(-∞,+∞)内满足关系式f’(x)=f(x)且f(0)=1,则f(x)=еx
证明若函数f(x)在R内可导且f'(x)=f(x),f(0)=1,则f(x)=e^x
高数题!证明若函数F(x)在负无穷大到正无穷大中满足F(X)=F‘(X),且F(0)=1,则F(X)=e^x
若函数f(x)满足f(-x)=-f(x),又在x>0上单调递增,且f(3)=0,则不等式xf(x)
已知函数f(x)>0,且满足f(x·y)=f(x)·f(y),若x>1,则f(x)>1
若函数f(x)满足f(x)+ xf撇(x)=e的x方,且f(1)=2,则f(x)=?