cosα=-4/5,
α属于(π/2,π),
∴ sinα>0
∴ sinα=√(1-cos²α)=√(1-16/25)=3/5
∴ tanα=sinα/cosα=(3/5)/(-4/5)=-3/4
∴ tan(π/4-α)
=[tan(π/4)-tanα]/[1+tan(π/4)tanα]
=(1-tanα)/(1+tanα)
=(1+3/4)/(1-3/4)
=7
cosα=-4/5,
α属于(π/2,π),
∴ sinα>0
∴ sinα=√(1-cos²α)=√(1-16/25)=3/5
∴ tanα=sinα/cosα=(3/5)/(-4/5)=-3/4
∴ tan(π/4-α)
=[tan(π/4)-tanα]/[1+tan(π/4)tanα]
=(1-tanα)/(1+tanα)
=(1+3/4)/(1-3/4)
=7