(1)
f(x)=2cos(x+π/4)cos(x-π/4)=2sin(x-π/4)*cos(x-π/4)=sin(2x-π/2)=cos(2x)
x∈(2kπ,2kπ+π/2),k∈Z时,f(x)单调递增
(2)f(α)=sin(2α-π/2)=12/13,α∈(-π/2,0),
2α-π/2∈(-3π/2,-π),
cos(2α-π/2)=-5/13
α-π/4∈(-3π/4,-π/2),
t=sin(α-π/4)<0
1-2t^2=-5/13
t=sin(α-π/4)=-3*(√13)/13
(3)
g(x)=f(x)+√3sin2x=2[cos(2x)/2+√3sin(2x)/2]=sin(2x+π/6),x∈[-π/6,π/4],
g(π/4)=(√3)/2
g(-π/6)=-1/2
g(x)min=-1/2
g(π/6)=g(x)max=1