lim(x→0)f(1/x)=lim(t→∞)f(t)=0,即f(x)在无穷远处的值为0,又f(x)在(-∞,+∞)上是周期函数,所以f(x)=0.
设f(x)是(-∞,+∞)上的周期函数,lim(x → 0)f(1/x)=0求f(x)
2个回答
相关问题
-
设f(x)具有二阶导数,且lim(x→0)f(x)/x=0,f"(0)=4,求lim(x→0)[1+f(x)/x]^(1
-
设f''(x)连续,且f''(x)>0,f(0)=f'(0)=0,试求极限lim(x->0+)∫(上u(x) 下0)f(
-
设f(x)=1/(1+e^(1/x)) 求 lim f(x) x->0
-
设f(x)的导函数是f′(x0),若f′(x0)=1,则lim△x→0f(x0+2△x)−f(x0)△x=______.
-
设lim x→0 ,[x·f(x)/1-cos2x]=1,其中f(0)=0,则f'(0)=?
-
已知x→0,lim[f(x,0)-f(0,0)]/|x|=0,求x→0,lim[f(x,0)-f(0,0)]/x=?
-
lim△x→0 f(xo-2△x)-f(x0)/△x=1,求f'(x0)
-
设f(x)连续,g(x) =∫(1,0)f(xt)dt,且lim x→0 f(x)/x =A,求 g'(x).
-
设连续函数f﹙x﹚满足lim﹙x→0﹚f﹙x﹚/x=2 ,令F﹙x﹚=∫﹙0,1﹚f﹙xt﹚dt ,则F′﹙0﹚= __
-
设f(x)连续,且f(0)0,求极限lim(x~0)∫x上0下(x-t)f(t)dt/x∫x上0下(x-t)dt