1×3×5+3×5×7+5×7×9+…+101×103×105=?

1个回答

  • 设Sn=1·3·5+3·5·7+5·7·9+…+(2n-1)(2n+1)(2n+3)

    S′n=1·3·5·7+3·5·7·9+5·7·9·11+…

    +(2n-1)(2n+1)(2n+3)(2n+5),

    令 k=(2k-1)(2k+1)(2k+3)(2k+5)(k=1,2,…,n),

    则 k+1- k=8(2k+1)(2k+3)(2k+5)

    于是有

    2- 1=8·3·5·7

    2- 2=8·5·7·9

    ……

    n- n-1=8(2n-1)(2n+1)(2n+3)

    将上述n个等式相加,得

    n- 1=8[3·5·7+5·7·9+…+(2n-1)(2n+1)(2n+3)]

    =8(Sn-1·3·5)=8(Sn-15)

    又 n=(2n-1)(2n+1)(2n+3)(2n+5)

    1=1·3·5·7

    ∴Sn=n(2n^3+8n^2+7n-2)

    因为 2(n-1)=101

    所以 n=51

    Sn=51(2*51^3+8*51^2+7*51-2)=14609715