取BC中点H,连接FH,HG分别交AB,AC于I,J,
且BD=CE,FG分别为BE,CD的中点,H为BC中点,所以:HF=HG=BD/2;即:三角形HFG为等腰三角形;
同时不难证明I,J为AB,AC中点,有角APQ=角JGQ=角HGF;同时:角IFP=角HFG=角AQP;即:角APQ=角AQP=角HGF=角HFG;即三角形APQ为等腰三角兄,所以AP=AQ.
取BC中点H,连接FH,HG分别交AB,AC于I,J,
且BD=CE,FG分别为BE,CD的中点,H为BC中点,所以:HF=HG=BD/2;即:三角形HFG为等腰三角形;
同时不难证明I,J为AB,AC中点,有角APQ=角JGQ=角HGF;同时:角IFP=角HFG=角AQP;即:角APQ=角AQP=角HGF=角HFG;即三角形APQ为等腰三角兄,所以AP=AQ.