tana
=tan[π/4-(π/4-a)]
=[tan(π/4)-tan(π/4-a)]/[1+tan(π/4)tan(π/4-a]
=(1+1/2)/(1-1/2)
=3
∴ cos2a
=cos²a-sin²a
=(cos²a-sin²a)/(cos²a+sin²a)
同除以cos²a
=(1-tan²a)/(1+tan²a)
=(1-9)/(1+9)
=-4/5
tana
=tan[π/4-(π/4-a)]
=[tan(π/4)-tan(π/4-a)]/[1+tan(π/4)tan(π/4-a]
=(1+1/2)/(1-1/2)
=3
∴ cos2a
=cos²a-sin²a
=(cos²a-sin²a)/(cos²a+sin²a)
同除以cos²a
=(1-tan²a)/(1+tan²a)
=(1-9)/(1+9)
=-4/5