∠1+∠2=2∠A
证明:
连接A'A
∵△ADE和△A'DE关于CD对称
∴∠AA'D=∠A'AD,∠AA'E=∠A'AE
又:∠1=∠AA'E+∠A'AE=2∠A'AE,∠2=∠AA'D+∠A'AD=2∠A'AD,∠A'AE+∠A'AD=∠A
∴∠1+∠2=2∠A'AE+2∠A'AD=2∠A
∠1+∠2=2∠A
证明:
连接A'A
∵△ADE和△A'DE关于CD对称
∴∠AA'D=∠A'AD,∠AA'E=∠A'AE
又:∠1=∠AA'E+∠A'AE=2∠A'AE,∠2=∠AA'D+∠A'AD=2∠A'AD,∠A'AE+∠A'AD=∠A
∴∠1+∠2=2∠A'AE+2∠A'AD=2∠A