1 ∠ABF=90º-∠AFB
∠DFE=180º-∠BFE-∠AFB=90º-∠AFB=∠ABF
∠A=∠D=90º
所以 三角形ABF和三角形DFE相似
2 sinDFE=3分之1 即DE/EF=1/3 EF=3DE
AB=CD=DE+EC=DE+EF=4DE
DF=√(EF^2-DE^2)=DE*√8=DE*2√2
三角形ABF和三角形DFE相似
EF/DF=FB/AB
FB=EF*AB/DF=3DE*4DE/2√2DE=3√2DE
FB=BC EF=EC
tanEBC=EC/BC=3DE/3√2DE=1/√2=√2/2