几何难题在正方形ABCD中,E.F分别为BC.AB上两点,且BE等于BF,过点B作AE的垂线交AC于点G,过点G作CF的

3个回答

  • 设FC,BG相交于J.连结DG

    ∵GH⊥CF,BG⊥AE

    ∴∠M + ∠BJC = 180°

    ∵∠BJC + ∠GJC = 180°

    ∴∠M = ∠GJC

    ∵ABE≌△FBC

    ∴∠BAE = ∠BCF

    ∴∠EAC = ∠FCA

    ∵在△MAG中,

    ∠M + ∠GAM + ∠AGM = 180°

    在△JGC中,

    ∠GJC + ∠JCG + ∠JGC = 180°

    ∴∠AGM = ∠JGC

    ∵△CDG≌△CBG

    ∴∠DGC = ∠JGC

    ∴∠AGM = ∠DGC

    ∴D,G,H三点共线

    ∵∠ABC = 90°,BG⊥AE

    ∴∠BAE = ∠CBG

    ∵△CBG≌△CBG

    ∴∠CBG =∠CDG

    ∴∠BAE = ∠CBG

    ∴∠MAD = ∠MDA

    ∴AM = DM

    ∵△ADG≌△ABG

    ∴DG = GB

    ∵DM = DG + GM

    ∴AM = GB + GM