设FC,BG相交于J.连结DG
∵GH⊥CF,BG⊥AE
∴∠M + ∠BJC = 180°
∵∠BJC + ∠GJC = 180°
∴∠M = ∠GJC
∵ABE≌△FBC
∴∠BAE = ∠BCF
∴∠EAC = ∠FCA
∵在△MAG中,
∠M + ∠GAM + ∠AGM = 180°
在△JGC中,
∠GJC + ∠JCG + ∠JGC = 180°
∴∠AGM = ∠JGC
∵△CDG≌△CBG
∴∠DGC = ∠JGC
∴∠AGM = ∠DGC
∴D,G,H三点共线
∵∠ABC = 90°,BG⊥AE
∴∠BAE = ∠CBG
∵△CBG≌△CBG
∴∠CBG =∠CDG
∴∠BAE = ∠CBG
∴∠MAD = ∠MDA
∴AM = DM
∵△ADG≌△ABG
∴DG = GB
∵DM = DG + GM
∴AM = GB + GM