如图,在三角形ABC中,角C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证角B

2个回答

  • 证法一(初中知识证法):

    证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P.

    设AC=BM=X,MC=AN=Y,则

    BC=BM+MC=X+Y,CN=AC-AN=X-Y

    AM=√(AC^2+MC^2)=√(X^2+Y^2)

    过N点作NE⊥AM,交AM于E点,则△AEN∽△ACB

    AE/AN=AC/AM,NE/AN=MC/AM

    AE=AN*AC/AM=Y*X/√(X^2+Y^2)

    NE=AN*MC/AM=Y^2/√(X^2+Y^2)

    过P点作PF⊥BC,交BC于F点,则△PFM∽△ACM,△BPF∽△BNC

    PF/FM=AC/MC,PF=FM*AC/MC=FM*X/Y

    PF/BF=CN/BC,PF=BF*CN/BC=BF*(X-Y)/(X+Y)

    BF*(X-Y)/(X+Y)=FM*X/Y

    BF=(FM*X/Y)*[(X+Y)/(X-Y)]=FM*X*(X+Y)/[Y*(X-Y)]

    BF=BM+FM=X+FM

    FM*X*(X+Y)/[Y*(X-Y)]=X+FM

    FM=XY*(X-Y)/(X^2+Y^2)

    PM/FM=AM/CM

    PM=FM*AM/MC=[XY*(X-Y)/(X^2+Y^2)]*[√(X^2+Y^2)/Y]

    =X*(X-Y)/√(X^2+Y^2)

    PE=AM-AE-PM

    =√(X^2+Y^2)-Y*X/√(X^2+Y^2)-X*(X-Y)/√(X^2+Y^2)

    =Y^2/√(X^2+Y^2)

    =NE

    因为NE⊥AM,即NE⊥PE

    可知在直角△NEP中,NE=PE

    故 ∠EPN=45°

    但∠BPM=∠EPN

    所以∠BPM=45°

    证法二:

    证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P.

    设AC=BM=X,MC=AN=Y,则

    BC=BM+MC=X+Y,CN=AC-AN=X-Y

    tan∠AMC=AC/MC=X/Y

    tan∠NBC=CN/BC=(X-Y)/(X+Y)

    ∠AMC=∠BPM+∠NBC

    ∠BPM=∠AMC-∠NBC

    tan∠BPM=tan(∠AMC-∠NBC)

    =(tan∠AMC-tan∠NBC)/(1+tan∠AMC*tan∠NBC)

    =[X/Y-(X-Y)/(X+Y)]/[1+(X/Y)*(X-Y)/(X+Y)]

    =[X*(X+Y)-Y*(X-Y)]/[Y*(X+Y)+X*(X-Y)]

    =(X ^2+Y ^2)/(X ^2+Y ^2)

    =1

    因为∠BPM