1.令f(x)=4x-2^x已经证明该函数单调递增,有一个根,设根为a(那么f(a)=0),则a属于(0,1)
则,当x在(0,a)上f(x)0.因此只有f(a)=0一个根
2.能.只要是单调的函数就行.证明同上,只不过这时候,当x在(0,a)上f(x)>0;在(a,1)上f(x)
1.令f(x)=4x-2^x已经证明该函数单调递增,有一个根,设根为a(那么f(a)=0),则a属于(0,1)
则,当x在(0,a)上f(x)0.因此只有f(a)=0一个根
2.能.只要是单调的函数就行.证明同上,只不过这时候,当x在(0,a)上f(x)>0;在(a,1)上f(x)