a(n+1)=an+n
a(n+1)-an=n
an-a(n-1)=n-1
a(n-1)-a(n-2)=n-2
…………
a2-a1=1
累加
a(n+1)-a1=1+2+...+n=n(n+1)/2
bn=1/[a(n+1)-a1]=2/[n(n+1)]=2[1/n -1/(n+1)]
Sn=b1+b2+...+bn=2[1/1-1/2+1/2-1/3+...+1/n -1/(n+1)]
=2[1- 1/(n+1)]
=2n/(n+1)
S10=2×10/(10+1)=20/11
a(n+1)=an+n
a(n+1)-an=n
an-a(n-1)=n-1
a(n-1)-a(n-2)=n-2
…………
a2-a1=1
累加
a(n+1)-a1=1+2+...+n=n(n+1)/2
bn=1/[a(n+1)-a1]=2/[n(n+1)]=2[1/n -1/(n+1)]
Sn=b1+b2+...+bn=2[1/1-1/2+1/2-1/3+...+1/n -1/(n+1)]
=2[1- 1/(n+1)]
=2n/(n+1)
S10=2×10/(10+1)=20/11