解题思路:把数列仿写一个,两式相减,合并同类型,用平方差分解因式,约分后得到数列相邻两项之差为定值,得到数列是等差数列,公差为2,取n=1代入4Sn=(an-1)(an+3)得到首项的值,写出通项公式.从而得到a1005.
∵4Sn=(an-1)(an+3),
∴4sn-1=(an-1-1)(an-1+3),
两式相减得整理得:2an+2an-1=an2-an-12,
∵{an}是正项数列,
∴an-an-1=2,
∵4Sn=(an-1)(an+3),
令n=1得a1=3,
∴an=2n+1,
∴a1005=2×1005+1=2011.
故答案为:2011.
点评:
本题考点: 数列递推式.
考点点评: 本题考查数列的递推式,解题时要注意数列通项公式的求解方法,合理地进行等价转化.