2. g(x)=f(x)-x^2 = ax-lnx
=> g'(x)=a-(1/x)
=> 当x属于(0,e]时,g'(x)是增函数
=> g'(x) g(x)>=g(e)=ae-1 ,函数g(x)的最小值是3
=> ae-1 = 3
=> a = 4/e
(2)、当a>e时: 当x∈(0,1/a] =>g(x)是减函数
当x∈(1/a,e] =>g(x)是增函数
=> g(x)>=g(1/a)=1-ln(1/a) =3
=> ln(1/a) = -2
=> a = e^2
2. g(x)=f(x)-x^2 = ax-lnx
=> g'(x)=a-(1/x)
=> 当x属于(0,e]时,g'(x)是增函数
=> g'(x) g(x)>=g(e)=ae-1 ,函数g(x)的最小值是3
=> ae-1 = 3
=> a = 4/e
(2)、当a>e时: 当x∈(0,1/a] =>g(x)是减函数
当x∈(1/a,e] =>g(x)是增函数
=> g(x)>=g(1/a)=1-ln(1/a) =3
=> ln(1/a) = -2
=> a = e^2